close
close

Amphibian tolerance to arsenic: microbiome-mediated insights

  • Saha, J. C., Dikshit, A. K., Bandyopadhyay, M. & Saha, K. C. A review of arsenic poisoning and its effects on human health. Crit. Rev. Environ. Sci. Technol. 29, 281–313. https://doi.org/10.1080/10643389991259227 (1999).

    Article 
    CAS 

    Google Scholar 

  • Johnson, J. H. Note on the validity of Machover’s indicators of anxiety. Percept. Mot. Skills 33, 126. https://doi.org/10.2466/pms.1971.33.1.126 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bundschuh, J. et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Sci. Total Environ. 780, 146274. https://doi.org/10.1016/j.scitotenv.2021.146274 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Petrini, R. et al. Natural arsenic contamination in waters from the Pesariis village, NE Italy. Environ. Earth Sci. 62, 481–491. https://doi.org/10.1007/s12665-010-0541-3 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borba, R. P., Figueiredo, B. R., Rawlins, B. & Matschullat, J. Arsenic in water and sediment in the Iron Quadrangle, state of Minas Gerais, Brazil. Rev. Bras. Geociênc. 30, 558–561 (2000).

    Article 
    CAS 

    Google Scholar 

  • Alonso, D. L., Pérez, R., Okio, C. K. Y. A. & Castillo, E. Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. J. Environ. Manag. 264, 110478 (2021).

    Article 

    Google Scholar 

  • Reid, M. S. et al. Arsenic speciation analysis: A review with an emphasis on chromatographic separations. TrAC Trends Anal. Chem. 123, 115770. https://doi.org/10.1016/j.trac.2019.115770 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mohammed Abdul, K. S., Jayasinghe, S. S., Chandana, E. P. S., Jayasumana, C. & De Silva, P. M. C. S. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 40, 828–846. https://doi.org/10.1016/j.etap.2015.09.016 (2015).

    Article 
    CAS 

    Google Scholar 

  • Miller, W. H. Jr., Schipper, H. M., Lee, J. S., Singer, J. & Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res. 62, 3893–3903 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Briat, J. F. Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proc. Natl. Acad. Sci. 107, 20853. https://doi.org/10.1073/pnas.1016286107 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daus, B. et al. Arsenic speciation in plant samples from the iron Quadrangle, Minas Gerais, Brazil. Microchim. Acta 151, 175–180. https://doi.org/10.1007/s00604-005-0397-5 (2005).

    Article 
    CAS 

    Google Scholar 

  • Pence, N. S. et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. 97, 4956. https://doi.org/10.1073/pnas.97.9.4956 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlebusch, C. M. et al. Human adaptation to arsenic-rich environments. Mol. Biol. Evolut. 32, 1544–1555. https://doi.org/10.1093/molbev/msv046 (2015).

    Article 
    CAS 

    Google Scholar 

  • Chen, S.-C. et al. Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci. Rep. 7, 7741. https://doi.org/10.1038/s41598-017-08313-2 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giguère, A., Campbell, P. G. C., Hare, L. & Couture, P. Sub-cellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallic gradient. Aquat. Toxicol. 77, 178–189. https://doi.org/10.1016/j.aquatox.2005.12.001 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uren Webster, T. M., Bury, N., van Aerle, R. & Santos, E. M. Global transcriptome profiling reveals molecular mechanisms of metal tolerance in a chronically exposed wild population of brown trout. Environ. Sci. Technol. 47, 8869–8877. https://doi.org/10.1021/es401380p (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida Rodrigues, P., Ferrari, R. G., Kato, L. S., Hauser-Davis, R. A. & Conte-Junior, C. A. A systematic review on metal dynamics and marine toxicity risk assessment using crustaceans as bioindicators. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-021-02685-3 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gupta, S.K. & Singh, J. Evaluation of mollusc as sensitive indicatior of heavy metal pollution in aquatic system: A review (2011).

  • Adlassnig, W. et al. Amphibians in metal-contaminated habitats. Salamandra 49, 149–158 (2013).

    Google Scholar 

  • Hopkins, W. A. Amphibians as models for studying environmental change. ILAR J. 48, 270–277. https://doi.org/10.1093/ilar.48.3.270 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kerby, J. L., Richards-Hrdlicka, K. L., Storfer, A. & Skelly, D. K. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecol. Lett. 13, 60–67 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Chen, T. H., Gross, J. A. & Karasov, W. H. Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): Bioaccumulation and reduced swimming performance. Ecotoxicology 18, 587–593. https://doi.org/10.1007/s10646-009-0316-3 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moriarty, M. M., Koch, I. & Reimer, K. J. Arsenic species and uptake in amphibians (Rana clamitans and Bufo americanus). Environ. Sci. Process. Impacts 15, 1520–1528. https://doi.org/10.1039/C3EM00223C (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dunivin, T. K., Yeh, S. Y. & Shade, A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 17, 45 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martins, R.A., Greenspan, S.E., Medina, D., Buttimer, S., Siomko, S., Neely, W.J., Marshall, V., Lyra, M.L., Haddad, C.F.B., Sao Pedro, V. & Becker, C.G. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim. Microbiomes (in press).

  • Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250. https://doi.org/10.1111/mec.12510 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Cordeiro, I. F. et al. Arsenic resistance in cultured cutaneous microbiota is associated with anuran lifestyles in the Iron Quadrangle, Minas Gerais State, Brazil. Herpetol. Notes 12, 1083–1093 (2019).

    Google Scholar 

  • Proença, D. N., Fasola, E., Lopes, I. & Morais, P. V. Characterization of the skin cultivable microbiota composition of the frog Pelophylax perezi inhabiting different environments. Int. J. Environ. Res. Public Health 18, 2585 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodhams, D. C., McCartney, J., Walke, J. B. & Whetstone, R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. Dev. Comp. Immunol. 145, 104690 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448. https://doi.org/10.1098/rspb.2018.2448 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flechas, S. V. et al. Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J. 13, 361–373. https://doi.org/10.1038/s41396-018-0284-9 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. 111, E5049. https://doi.org/10.1073/pnas.1412752111 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rebollar, E. A. et al. The skin microbiome of the neotropical frog Craugastor fitzingeri: Inferring potential bacterial–host–pathogen interactions from metagenomic data. Front. Microbiol. 9, 466. https://doi.org/10.3389/fmicb.2018.00466 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rebollar, E. A. et al. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 10, 1682–1695. https://doi.org/10.1038/ismej.2015.234 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walke Jenifer, B. et al. Most of the dominant members of amphibian skin bacterial communities can be readily cultured. Appl. Environ. Microbiol. 81, 6589–6600. https://doi.org/10.1128/AEM.01486-15 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6, 588–596. https://doi.org/10.1038/ismej.2011.129 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Preuss, J. et al. Widespread pig farming practice linked to shifts in skin microbiomes and disease in pond-breeding amphibians. Environ. Sci. Technol. 54, 11301–11312 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Assis, A. B., Barreto, C. C. & Navas, C. A. Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens. PLoS One 12, e0179628. https://doi.org/10.1371/journal.pone.0179628 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varejão, E. V. V., Bellato, C. R., Fontes, M. P. F. & Mello, J. W. V. Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil. Environ. Monit. Assess. 172, 631–642. https://doi.org/10.1007/s10661-010-1361-3 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borba, R.P. Arsênio em Ambiente Superficial: Processos Geoquímicos Naturais e Antropogênico em Uma Área de Mineração Aurífera Doutorado em Ciências. (Universidade Estadual de Campinas, 2002).

  • Costa, R. V. F., Leite, M. G. P., Mendonça, F. P. C. & Nalini, H. A. Jr. Geochemical mapping of arsenic in surface waters and stream sediments of the Quadrilátero Ferrífero, Brazil. Rem Rev. Escola Minas 68, 43–51 (2015).

    Article 

    Google Scholar 

  • Cruz, L. V. Avaliação Geoquímica Ambiental da Estação Ecológica do Tripuí e Adjacências, sudeste do Quadrilátero Ferrífero (Universidade Federal de Ouro Preto, 2002).

    Google Scholar 

  • Yao, X.-f, Zhang, J.-m, Tian, L. & Guo, J.-h. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz. J. Microbiol. 48, 71–78. https://doi.org/10.1016/j.bjm.2016.09.007 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haddad, C. F. B. et al. Guia dos Anfíbios da Mata Atlântica – Diversidade e Biologia (Anolis Books Editora, 2013).

    Google Scholar 

  • Aziz, Z. et al. Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour. Res. 44, 33. https://doi.org/10.1029/2007WR006000 (2008).

    Article 
    CAS 

    Google Scholar 

  • Christian, K., Weitzman, C., Rose, A., Kaestli, M. & Gibb, K. Ecological patterns in the skin microbiota of frogs from tropical Australia. Ecol. Evol. 8, 10510–10519. https://doi.org/10.1002/ece3.4518 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 86. https://doi.org/10.1038/s41467-017-00119-0 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science. 318, 1775–1777 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Outten, F. W., Outten, C. E. & O’Halloran, T. V. Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In Bacterial Stress Responses (ed. Storz, G.) 145–157 (ASM Press, 2000).

    Google Scholar 

  • Costa Gonçalves, J. A., de Lena, J. C., Paiva, J. F., Naline, H. A. Jr. & Pereira, J. C. Arsenic in the groundwater of Ouro Preto (Brazil): Its temporal behavior as influenced by the hydric regime and hydrogeology. Environ. Geol. 53, 785–793 (2007).

    Article 
    ADS 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • FEMA. Plano de Manejo da Estação Ecológica do Tripuí, Ouro Preto-MG. Belo Horizonte: Fundação Estadual do Meio Ambiente-FEMA. 71 (1995).

  • Luppi, A. S. L., Santos, ARd., Eugenio, F. C. & Feitosa, L. S. A. Utilização de Geotecnologia para o Mapeamento de Áreas de Preservação Permanente no Município de João Neiva, ES. Floresta Ambiente 22, 13–22. https://doi.org/10.1590/2179-8087.0027 (2015).

    Article 

    Google Scholar 

  • Panceri Fleguer, E., Rabelo Teixeira, A. F. & Costa de Melo, A. M. Caracterização preliminar da cacauicultura em João Neiva, Espírito Santo e sua relação com os princípios agroecológicos. Rev. Bras. Agroecol. 2, 4 (2007).

    Google Scholar 

  • Campbell Grant, E. H. Visual implant elastomer mark retention through metamorphosis in amphibian larvae. J. Wildl. Manag. 72, 1247–1252. https://doi.org/10.2193/2007-183 (2008).

    Article 

    Google Scholar 

  • Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).

    Article 
    CAS 

    Google Scholar 

  • Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300. https://doi.org/10.1128/jb.62.3.293-300.1951 (1951).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 253, 110869. https://doi.org/10.1016/j.cbpa.2020.110869 (2021).

    Article 
    CAS 

    Google Scholar 

  • Crawley, M. J. The R book 2nd edn, 2013 (Wiley, 2013).

    Google Scholar 

  • Team RC. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).