close
close

Global peak water limit of future groundwater withdrawals

  • Abbott, B. W. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533–540 (2019).

    Article 
    CAS 

    Google Scholar 

  • Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

    Article 

    Google Scholar 

  • Postel Sandra, L., Daily Gretchen, C. & Ehrlich Paul, R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996).

    Article 

    Google Scholar 

  • Vörösmarty Charles, J., Green, P., Salisbury, J. & Lammers Richard, B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article 

    Google Scholar 

  • Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article 
    CAS 

    Google Scholar 

  • Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liu, L. et al. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environ. Res. Lett. 13, 044026 (2018).

    Article 

    Google Scholar 

  • Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).

    Article 
    CAS 

    Google Scholar 

  • Gleeson, T., Cuthbert, M., Ferguson, G. & Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 48, 431–463 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9, 104003 (2014).

    Article 

    Google Scholar 

  • Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article 
    CAS 

    Google Scholar 

  • Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res.https://doi.org/10.1029/2011WR010562 (2012).

  • Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article 

    Google Scholar 

  • Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrogeol. J. 13, 317–320 (2005).

    Article 
    CAS 

    Google Scholar 

  • Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article 

    Google Scholar 

  • Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B. & Frolking, S. The use and re-use of unsustainable groundwater for irrigation: a global budget. Environ. Res. Lett. 12, 034017 (2017).

    Article 

    Google Scholar 

  • Aquastat Database (FAO, accessed 5 June 2022); https://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

  • Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article 
    CAS 

    Google Scholar 

  • Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

    Article 

    Google Scholar 

  • Birnbaum, A., Lamontagne, J., Wild, T., Dolan, F. & Yarlagadda, B. Drivers of future physical water scarcity and its economic impacts in Latin America and the Caribbean. Earths Future 10, e2022EF002764 (2022).

    Article 

    Google Scholar 

  • Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 10.5751/ES-07039-190450 (2014).

  • Hubbert, M. K. Nuclear Energy and the Fossil Fuels Vol. 95 (Shell Development Company, Exploration and Production Research Division, 1956); http://www.energycrisis.com/Hubbert/1956/1956.pdf

  • Meinert, L. D., Robinson, G. R. & Nassar, N. T. Mineral resources: reserves, peak production and the future. Resources https://doi.org/10.3390/resources5010014 (2016).

  • Ericsson, M. & Söderholm, P. Mineral Depletion and Peak Production 222–231 (Palgrave Macmillan, 2013);https://doi.org/10.1057/9781137349149_12

  • Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. USA 107, 11155–11162 (2010).

    Article 
    CAS 

    Google Scholar 

  • Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earths Future 7, 123–135 (2019).

    Article 

    Google Scholar 

  • Calvin, K. et al. Gcam v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article 

    Google Scholar 

  • Graham, N. T. et al. Future changes in the trading of virtual water. Nat. Commun. 11, 3632 (2020).

    Article 
    CAS 

    Google Scholar 

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).

    Article 

    Google Scholar 

  • Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article 
    CAS 

    Google Scholar 

  • Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).

    Article 

    Google Scholar 

  • Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article 
    CAS 

    Google Scholar 

  • de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).

    Article 

    Google Scholar 

  • Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048604 (2011).

  • Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044571 (2010).

  • Huang, Z. et al. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 574, 242–256 (2019).

    Article 

    Google Scholar 

  • Fitton, N. et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Change 58, 101944 (2019).

    Article 

    Google Scholar 

  • Turner, S. W. D., Hejazi, M., Calvin, K., Kyle, P. & Kim, S. A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Sci. Total Environ. 673, 165–176 (2019).

    Article 
    CAS 

    Google Scholar 

  • van Vuuren, D. P. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar 

  • Graham, N. T. et al. Water sector assumptions for the shared socioeconomic pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).

    Article 

    Google Scholar 

  • Hejazi, M. I. et al. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 18, 2859–2883 (2014).

    Article 

    Google Scholar 

  • Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–40 (2015).

    Article 
    CAS 

    Google Scholar 

  • Heistermann, M. Hess opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21, 3455–3461 (2017).

    Article 

    Google Scholar 

  • Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. https://doi.org/10.1029/2007WR006767 (2009).

  • Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).

    Article 

    Google Scholar 

  • D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article 

    Google Scholar 

  • Wada, Y. et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFAS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Article 

    Google Scholar 

  • Byers, E. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

    Article 

    Google Scholar 

  • Miralles-Wilhelm, F. Water is the middle child in global climate policy. Nat. Clim. Change 12, 110–112 (2022).

    Article 

    Google Scholar 

  • Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    Article 
    CAS 

    Google Scholar 

  • Zhao, X., Calvin, K. V., Wise, M. A. & Iyer, G. The role of global agricultural market integration in multiregional economic modeling: using hindcast experiments to validate an Armington model. Econ. Anal. Policy 72, 1–17 (2021).

    Article 

    Google Scholar 

  • Bryant, B. P. & Lempert, R. J. Thinking inside the box: a participatory, computer-assisted approach to scenario discovery. Technol. Forecast. Soc. Change 77, 34–49 (2010).

    Article 

    Google Scholar 

  • Gleeson, T. et al. GMD perspective: the quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).

    Article 

    Google Scholar 

  • Wada, Y. et al. Human–water interface in hydrological modelling: current status and future directions. Hydrol. Earth Syst. Sci. 21, 4169–4193 (2017).

    Article 
    CAS 

    Google Scholar 

  • Niazi, H. et al. Large ensemble dataset for discovering global peak water limit of future groundwater withdrawals using 900 GCAM runs. Zenodo https://doi.org/10.5281/zenodo.6480465 (2023).

  • Niazi, H. Meta-repository for groundwater peak and decline: JGCRI/niazi-etal_2024_nature-sustainability: v1-accepted. Zenodo https://doi.org/10.5281/zenodo.10524993 (2024).

  • Kim, S. H. et al. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217–231 (2016).

    Article 

    Google Scholar 

  • Hejazi, M. et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Change 81, 205–226 (2014).

    Article 

    Google Scholar 

  • Liu, Y., Hejazi, M., Li, H., Zhang, X. & Leng, G. A hydrological emulator for global applications—HE v1.0.0. Geosci. Model Dev. 11, 1077–1092 (2018).

    Article 

    Google Scholar 

  • Vernon, C. R. et al. A global hydrologic framework to accelerate scientific discovery. J. Open Res. Softw. 10.5334/jors.245 (2019).

  • Richts, A., Struckmeier, W. F. & Zaepke, M. WHYMAP and the Groundwater Resources Map of the World 1:25,000,000 159–173 (Springer, 2011); https://doi.org/10.1007/978-90-481-3426-7_10

  • Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    Article 

    Google Scholar 

  • de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    Article 

    Google Scholar 

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kyle, P. et al. Assessing the future of global energy-for-water. Environ. Res. Lett. 16, 024031 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cui, R. Y. et al. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 13, 094006 (2018).

    Article 

    Google Scholar 

  • Liu, L., Hejazi, M., Iyer, G. & Forman, B. A. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    Article 

    Google Scholar 

  • Giuliani, M., Lamontagne, J. R., Hejazi, M. I., Reed, P. M. & Castelletti, A. Unintended consequences of climate change mitigation for African river basins. Nat. Clim. Change 12, 187–192 (2022).

    Article 

    Google Scholar 

  • Lempert, R. J. A new decision sciences for complex systems. Proc. Natl Acad. Sci. USA 99, 7309–7313 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lamontagne, J. R. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    Article 

    Google Scholar 

  • Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article 
    CAS 

    Google Scholar 

  • Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590, 663–675 (2017).

    Article 

    Google Scholar 

  • Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article 
    CAS 

    Google Scholar 

  • Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article 
    CAS 

    Google Scholar 

  • Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article 

    Google Scholar 

  • Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global‐scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article 

    Google Scholar 

  • Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).

    Article 

    Google Scholar 

  • Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).

    Article 

    Google Scholar 

  • van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y. & Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18, 2955–2973 (2014).

    Article 

    Google Scholar 

  • Wada, Y. Past and future contribution of global groundwater depletion to sea‐level rise. Geophys. Res. Lett. 39, L09402 (2012).

    Article 

    Google Scholar 

  • Yoshikawa, S., Cho, J., Yamada, H. G., Hanasaki, N. & Kanae, S. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2050). Hydrol. Earth Syst. Sci. 18, 4289–4310 (2014).

    Article 

    Google Scholar 

  • Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article 

    Google Scholar