close
close

Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management

  • Reissmann, J. H. et al. Vertical mixing in the Baltic Sea and consequences for eutrophication—A review. Prog. Oceanogr. 82, 47–80 (2009).

    Article 

    Google Scholar 

  • Team, B. I. A. et al. Second Assessment of Climate Change for the Baltic Sea Basin. 291-292 (Springer, 2015).

  • Meier, H. E. M. et al. Climate change in the Baltic Sea region: A summary. Earth Syst. Dyn. 13, 457–593 (2022).

    Article 

    Google Scholar 

  • Rutgersson, A. et al. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dyn. 13, 251–301 (2022).

    Article 

    Google Scholar 

  • Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 3, 73–77 (2013).

    Article 

    Google Scholar 

  • Baker-Austin, C., Trinanes, J., Gonzalez-Escalona, N. & Martinez-Urtaza, J. Non-cholera vibrios: the microbial barometer of climate change. Trends Microbiol. 25, 76–84 (2017).

    Article 
    CAS 

    Google Scholar 

  • Frank, C., Littman, M., Alpers, K. & Hallauer, J. Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. Wkly. releases 11, 3024 (2006).

    Google Scholar 

  • Ruppert, J. et al. Two cases of severe sepsis due to Vibrio vulnificus wound infection acquired in the Baltic Sea. Eur. J. Clin. Microbiol. Infect. Dis. 23, 912–915 (2004).

    CAS 

    Google Scholar 

  • Brehm, T. T. et al. Non-cholera Vibrio species — currently still rare but growing danger of infection in the North Sea and the Baltic Sea. Internist 62, 876–886 (2021).

    Article 

    Google Scholar 

  • Linkous, D. A. & Oliver, J. D. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174, 207–214 (1999).

    Article 
    CAS 

    Google Scholar 

  • Amato, E. et al. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Eurosurveillance 27, 2101088 (2022).

    Article 
    CAS 

    Google Scholar 

  • Blackwell, K. D. & Oliver, J. D. The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina Estuaries. J. Microbiol. 46, 146–153 (2008).

    Article 

    Google Scholar 

  • Banakar, V. et al. Temporal and spatial variability in the distribution of Vibrio vulnificus in the Chesapeake Bay: a hindcast study. Ecohealth 8, 456–467 (2011).

    Article 

    Google Scholar 

  • Johnson, C. N. et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl. Environ. Microbiol. 78, 7249–7257 (2012).

    Article 
    CAS 

    Google Scholar 

  • Randa, M. A., Polz, M. F. & Lim, E. Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl. Environ. Microbiol. 70, 5469–5476 (2004).

    Article 
    CAS 

    Google Scholar 

  • Eiler, A., Gonzalez-Rey, C., Allen, S. & Bertilsson, S. Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiol. Ecol. 60, 411–418 (2007).

    Article 
    CAS 

    Google Scholar 

  • Eiler, A., Johansson, M. & Bertilsson, S. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl. Environ. Microbiol. 72, 6004–6011 (2006).

    Article 
    CAS 

    Google Scholar 

  • Rippey, S. R. Infectious diseases associated with molluscan shellfish consumption. Clin. Microbiol. Rev. 7, 419–425 (1994).

    Article 
    CAS 

    Google Scholar 

  • Yun, N. R. & Kim, D. M. Vibrio vulnificus infection: A persistent threat to public health. Korean J. Intern. Med. 33, 1070–1078 (2018).

    Article 
    CAS 

    Google Scholar 

  • Baker‐Austin, C., Stockley, L., Rangdale, R. & Martinez‐Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2, 7–18 (2010).

    Article 

    Google Scholar 

  • Haenen, O. L. M. et al. Vibrio vulnificus outbreaks in Dutch eel farms since 1996: Strain diversity and impact. Dis. Aquat. Organ. 108, 201–209 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science. 355, 731–733 (2017).

    Article 
    CAS 

    Google Scholar 

  • Reusch, T. B. H. et al. Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds. Front. Mar. Sci. 168, 1–6 (2021).

    Google Scholar 

  • Fonseca, M. S., Fisher, J. S., Zieman, J. C. & Thayer, G. W. Influence of the seagrass, Zostera marina L., on current flow. Estuar. Coast. Shelf Sci. 15, 351–364 (1982).

    Article 

    Google Scholar 

  • Nowell, A. R. M. & Jumars, P. A. Flow environments of aquatic benthos. Annu. Rev. Ecol. Syst. 15, 303–328 (1984).

    Article 

    Google Scholar 

  • Worcester, S. E. Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments. Mar. Ecol. Prog. Ser. 126, 223–232 (1995).

    Article 

    Google Scholar 

  • Peterson, B. J. & Heck, K. L. Jr Positive interactions between suspension-feeding bivalves and seagrass a facultative mutualism. Mar. Ecol. Prog. Ser. 213, 143–155 (2001).

    Article 

    Google Scholar 

  • Gonzalez-Ortiz, V. et al. Interactions between seagrass complexity, hydrodynamic flow and biomixing alter food availability for associated filter-feeding organisms. PLoS One 9, e104949 (2014).

    Article 

    Google Scholar 

  • Bodhaguru, M. et al. Screening, partial purification of antivibriosis metabolite sterol-glycosides from Rhodococcus sp. against aquaculture associated pathogens. Microb. Pathog. 134, 103597 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brumfield, K. D. et al. Environmental Factors Influencing Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus. Appl. Environ. Microbiol. 89, e00307–e00323 (2023).

    Article 

    Google Scholar 

  • Hsieh, J. L., Fries, J. S. & Noble, R. T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol. Appl. 17, S102–S109 (2007).

    Article 

    Google Scholar 

  • Brumfield, K. D. et al. Genomic diversity of Vibrio spp. and metagenomic analysis of pathogens in Florida Gulf coastal waters following Hurricane Ian. MBio 14, e01476–23 (2023).

    Article 

    Google Scholar 

  • Matcher, G., Lemley, D. & Adams, J. Bacterial community dynamics during a harmful algal bloom of Heterosigma akashiwo. Aquat. Microb. Ecol. 86, 153–167 (2021).

    Article 

    Google Scholar 

  • Greenfield, D. I. et al. Temporal and environmental factors driving Vibrio Vulnificus and V. Parahaemolyticus populations and their associations with harmful algal blooms in South Carolina detention ponds and receiving tidal creeks. GeoHealth 1, 306–317 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 1–18 (2015).

    Article 

    Google Scholar 

  • Bunse, C. et al. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom. Front. Microbiol. 7, 517 (2016).

    Article 

    Google Scholar 

  • Wallentinus, I. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80, 215–225 (1984).

    Article 
    CAS 

    Google Scholar 

  • El-Hadary, M. H., Elsaied, H. E., Khalil, N. M. & Mikhail, S. K. Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region. Environ. Sci. Pollut. Res. 29, 53403–53419 (2022).

    Article 

    Google Scholar 

  • Hamamoto, Y. & Honda, D. Nutritional intake of aplanochytrium (labyrinthulea, stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey–predator interactions in the grazing food web of the marine ecosystem. PLoS One 14, 1–23 (2019).

    Article 

    Google Scholar 

  • Reñé, A. et al. The new chytridiomycete Paradinomyces triforaminorum gen. et sp. nov. co-occurs with other parasitoids during a Kryptoperidinium foliaceum (Dinophyceae) bloom in the Baltic Sea. Harmful Algae 120, 102352 (2022).

    Article 

    Google Scholar 

  • Thomsen, H. A., Hällfors, G., Hällfors, S. & Ikävalko, J. New observations on the heterotrophic protists genus Thaumatomastix (Thaumatomastigaceae, Protista incertae sedis) with particular emphasis on material from the Baltic Sea. Ann. Bot. Fenn. 30, 87–108 (1993).

    Google Scholar 

  • Anschütz, A. A., Flynn, K. J. & Mitra, A. Acquired phototrophy and its implications for bloom dynamics of the TeleaulaxMesodiniumDinophysis-complex. Front. Mar. Sci. 8, 1–18 (2022).

    Article 

    Google Scholar 

  • Altenburger, A. et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci. Adv. 6, 1–9 (2020).

    Article 

    Google Scholar 

  • Matz, C. et al. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 102, 16819–16824 (2005).

    Article 
    CAS 

    Google Scholar 

  • Worden, A. Z. et al. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 8, 21–29 (2006).

    Article 
    CAS 

    Google Scholar 

  • Main, C. R., Salvitti, L. R., Whereat, E. B. & Coyne, K. J. Community-Level and species-specific associations between phytoplankton and particle-associated Vibrio species in delaware’s inland bays. Appl. Environ. Microbiol. 81, 5703–5713 (2015).

    Article 
    CAS 

    Google Scholar 

  • HELCOM. HELCOM Baltic Sea Action Plan (adopted by the HELCOM Ministerial meeting, Krakow, Poland 15th November 2007).

  • Ranft, S. et al. Eutrophication assessment of the Baltic Sea Protected Areas by available data and GIS technologies. Mar. Pollut. Bull. 63, 209–214 (2011).

    Article 
    CAS 

    Google Scholar 

  • Voss, M. et al. History and scenarios of future development of Baltic Sea eutrophication. Estuar. Coast. Shelf Sci. 92, 307–322 (2011).

    Article 
    CAS 

    Google Scholar 

  • Rydin, E., Kumblad, L., Wulff, F. & Larsson, P. Remediation of a eutrophic bay in the Baltic Sea. Environ. Sci. Technol. 51, 4559–4566 (2017).

    Article 
    CAS 

    Google Scholar 

  • Semenza, J. C. et al. Environmental suitability of Vibrio infections in a warming climate: an early warning system. Environ. Health Perspect. 125, 107004 (2017).

    Article 

    Google Scholar 

  • Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29, 181–184 (2001).

    Article 
    CAS 

    Google Scholar 

  • Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrn DB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).

    Article 
    CAS 

    Google Scholar 

  • Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 1–12 (2018).

    Article 

    Google Scholar 

  • Yildiz, F. H. & Visick, K. L. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 17, 109–118 (2009).

    Article 
    CAS 

    Google Scholar 

  • Joseph, L. A. & Wright, A. C. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J. Bacteriol. 186, 889–893 (2004).

    Article 
    CAS 

    Google Scholar 

  • Marco-Noales, E., Milán, M., Fouz, B., Sanjuán, E. & Amaro, C. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (Biotype 2). Appl. Environ. Microbiol. 67, 4717–4725 (2001).

    Article 
    CAS 

    Google Scholar 

  • McDougald, D., Lin, W., Rice, S. & Kjelleberg, S. The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus. Biofouling 22, 161–172 (2006).

    Article 

    Google Scholar 

  • Ugarelli, K., Chakrabarti, S., Laas, P. & Stingl, U. The seagrass holobiont and its microbiome. Microorganisms 5, 1–28 (2017).

    Article 

    Google Scholar 

  • Guan, C. et al. Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina. Biofouling 33, 867–880 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cúcio, C., Engelen, A. H., Costa, R. & Muyzer, G. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific. Front. Microbiol. 7, 1–15 (2016).

    Article 

    Google Scholar 

  • Möller, L., Kreikemeyer, B., Luo, Z.-H., Jost, G. & Labrenz, M. Impact of coastal aquaculture operation systems in Hainan island (China) on the relative abundance and community structure of Vibrio in adjacent coastal systems. Estuar. Coast. Shelf Sci. 233, 106542 (2020).

    Article 

    Google Scholar 

  • Webb, S. J., Rabsatt, T., Erazo, N. & Bowman, J. S. Impacts of Zostera eelgrasses on microbial community structure in San Diego coastal waters. Elem Sci Anth. 7, 11 (2019).

    Article 

    Google Scholar 

  • Grasshoff, K., Kremling, K., Ehrhardt, M. (eds.), Methods of Seawater Analysis − 3rd edition. Wiley-VCH, 159-228 (1999)

  • Lysiak-Pastuszak, E. & Krysell, M. Chemical measurements in the Baltic Sea: guidelines on quality assurance. 35, 146 – 149 (2004).

  • 2019). HELCOM. Guidelines for monitoring of chlorophyll a.

  • Kirchner, S. et al. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Appl. Environ. Microbiol. 76, 4387–4395 (2010).

    Article 
    CAS 

    Google Scholar 

  • Gasol, J. M. & Del Giorgio, P. A. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64, 197–224 (2000).

    Article 

    Google Scholar 

  • Lo, K., Hahne, F., Brinkman, R. R. & Gottardo, R. flowClust: a Bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics 10, 1–8 (2009).

    Article 

    Google Scholar 

  • Monaco, G. et al. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics 32, 2473–2480 (2016).

    Article 
    CAS 

    Google Scholar 

  • Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    Article 
    CAS 

    Google Scholar 

  • Balzano, S., Abs, E. & Leterme, S. C. Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74, 263–277 (2015).

    Article 

    Google Scholar 

  • Latz, M. A. C. et al. Short‐and long‐read metabarcoding of the eukaryotic rRNA operon: evaluation of primers and comparison to shotgun metagenomics sequencing. Mol. Ecol. Resour. 22, 2304–2318 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 1–7 (2014).

    Article 

    Google Scholar 

  • Glenn, T. C. et al. Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ 7, e7755 (2019).

    Article 

    Google Scholar 

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar 

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).

    Article 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 

    Google Scholar 

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    CAS 

    Google Scholar 

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 

    Google Scholar 

  • Brehm, T. T. et al. Heatwave-associated Vibrio infections in Germany, 2018 and 2019. Eurosurveillance 26, 2002041 (2021).

    Article 

    Google Scholar 

  • Panicker, G., Vickery, M. C. L. & Bej, A. K. Multiplex PCR detection of clinical and environmental strains of Vibrio vulnificus in shellfish. Can. J. Microbiol. 50, 911–922 (2004).

    Article 
    CAS 

    Google Scholar 

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.2, https://rpkgs.datanovia.com/rstatix/ (2023).

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar 

  • Breiman, L. E. O. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 27, 659–678 (2017).

    Article 

    Google Scholar 

  • Nixon, S. W. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41, 199–219 (1995).

    Article 

    Google Scholar 

  • Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article 

    Google Scholar 

  • Labrenz M. et al. 16S and 18S rRNA amplicon sequencing of coastal microbial communities across the salinity gradient of the Baltic Sea in pelagic, benthic, and biofilm environments. https://www.ebi.ac.uk/ena/data/view/PRJEB68222 (2024).

  • Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article 
    CAS 

    Google Scholar 

  • Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). Inform. 232, 1711–1724 (2014).

    Google Scholar 

  • Labrenz M. et al. The occurrence of Vibrio spp. in the salinity gradient of shallow coastal waters of the Baltic Sea—data set including environmental and microbiological data. (https://doi.org/10.12754/data-2023-0010) (2023).

  • Delgado, L. F., Labrenz, M., & Andersson, A. F. Vibrio 16S rRNA gene sequences (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10875108 (2024).